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Walk-Off Effects in Fabry—Perot Diplexers
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Abstract—Fabry-Perot (FP) resonators working under oblique
incidence can be used in the millimeter and far infrared bands as
diplexers or channel dropping filters. The response of two-grid
Fabry-Perot resonators under Gaussian beam excitation is evaluated
by adding the fields of the successive passes of the beam. The results
coincide with those obtained from a plane wave expansion of the
incident field. Closed form expressions are obtained for the losses
due to diffraction walk-off, geometrical walk-off, and mismatch.
Excellent agreement is obtained with experiments in the 70-80-GHz
band. For a 1-GHz-bandwidth filter, working at an incidence -angle
of 15°, and an incident beam waist radius of 40 mm, the transmission
loss at resonance does not exceed 1 dB. The refiection loss off-
resonance is about 0.1 dB. This type of diplexer is particularly useful
when used in conjunction with quasioptical guiding systems.

I. INTRODUCTION

HE OPERATION of conventional diplexers or channel

dropping filters is based on the resonance properties of
cylindrical or ring-type resonators coupled to waveguides
(for a review, see [1]). Because these devices are lossy
and difficult to construct in the millimeter-wave range,
1t is of interest to investigate quasioptical systems that can
perform similar operations. Quasioptical filters are in-
expensive and have low losses. A further advantage is that,
because of their large areas, they can handle large powers.
Quasioptical diplexers are particularly suitable for use with
quasioptical guiding systems such as those used for feeding
millimeter-wave antennas or for transmitting information
in cities [2].

The simplest type of quasioptical diplexer is a
plane-parallel Fabry—Perot (FP) resonator working under
oblique incidence. A band of frequency is transmitted
through the filter, the rest of the beam being reflected and
collected. It is in principle possible to fabricate quasi-
optical diplexers with two FP resonators operating under
normal incidence and 3-dB couplers. This arrangement,
which requires tight tolerances, is not discussed here.
An FP resonator incorporating two grids behaves essen-
tially as a single pole resonator. If three or more grids
are used, the band edges can be made steeper and the
in-band ripples arbitrarily small. We limit ourselves in
this paper to two-grid resonators.

The main difficulty experienced with the type of diplexer
just described results from the walk-off losses, which
originate from the incident beam being finite in size.
Indeed, only infinite plane waves are ‘“‘matched” to planc-
parallel resonators and fully transmitted at the resonance
frequency. For clarity, two kinds of walk-off losses are
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distinguished: the diffraction walk-off loss and the geo-
metrical walk-off loss. The first kind is due to the expan-
sion of the beam by diffraction as it bounces back and
forth between the two grids. This effect is observed even
under normal incidence. A related effect is observed with
focused ray pencils [3]. It is to be distinguished from the
diffraction loss that originates from the introduction of
apertures in the resonator [4]. The resonator is here
assumed to be much larger in diameter than the incident
beam. The second kind of loss is experienced when the
beam is incident on the resonator at some angle 8 different
from zero. This loss is a consequence of the lateral dis-
placement of the beam bouncing back and forth between
the grids. The successive passes of the beam do not
coincide spatially. This effect is called ‘‘geometrical”
because it can be understood, in first approximation, on
the basis of simple geometrical optics considerations.
These two walk-off losses have been observed at optical
wavelengths [57].

A general expression for the transmission of mode-
degenerate optical resonators (such as the FP) under
Gaussian beam excitation has been obtained by one of
the present authors [67]. This expression is used in the
present work. It is easy to see that, quite generally,
reflection on the two grids of the FP resonator in succession
amounts to a translation of the beam by a length 24
(where d denotes the mirror spacing) directed along the
normal to the grid plane. An incident beam is therefore
translated, after a round trip in the resonator, by a length
2d cos 0 along its own axis, and by a length 2d sin 6 lateral-
ly. The condition that the round-trip phase shift be a
multiple of 27 reduces for narrow-band filters to the well-
known resonance condition

2d cos 6 = I\ (D)

where ! denotes an integer. The resonance frequency
therefore increases with the incidence angle 4. The geo-
metrical walk-off can be neglected if the lateral beam
displacement is much smaller than the beam radius &
after a number of round trips roughly equal to the cavity
finesse F' (F is defined as the ratio of the free spectral
range ¢/2d cos 0 divided by the 3-dB bandwidth of the
resonance). The geometrical walk-off is negligible if

2d sin OF << &. (2)

The purpose of this paper is to give accurate expressions
of the loss suffered when this condition, (2), is not satisfied,
and compare these theoretical results with experiments.

We evaluate the transmission properties of plane-
parallel FP resonators under oblique incidence for Gaussian
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beam excitation by adding the fields of the successive
passes of the incident beam. This method is formally
equivalent to the modal approach, which, for the case of
plane-parallel resonators, amounts to performing plane
wave expansions of the incident beam. The form of the
result and the range of application, however, are different.
The multipass method gives the response in the form of
an infinite sum. This sum is, in general, more convenient
to evaluate than the integral obtained from the plane
wave expansion method. Furthermore, the multipass
method is applicable in principle to wedged FP resonators

[6].

II. APPROXIMATIONS

Two FP diplexers are shown in Fig. 1(a) and (b).
Fig. 1(a) shows the measuring setup for a diplexer used
in beam guiding systems. Dual-mode or hybrid-mode
feeds radiate beams that are collimated by lenses corrected
for spherical aberration [7]. Similar systems are used for
collecting the transmitted and reflected beams. Fig. 1(b)
shows the filter incorporated in a waveguide system.

In order to avoid the grating-like effects that degrade

the filter response, the grid periods should always be less

than A/(1 + sin 8). This is assumed to be the case. It is
further assumed that the grid period is small enough,
compared to the grid spacing, that the fine structure of
the field generated at one grid may be negligible at the
other grid. Under such circumstances, each grid behaves
as an impedance across a transmission line representing
free space. We further assume that the ohmic losses are
negligible. The grid is then fully characterized by its
field reflection coefficient for plane waves: p = RY2%e,
R is the power reflectivity and « the phase angle. Note
that p is usually a function of the incidence angle 6.
Because the angular divergences of the beams that we
are considering are small, the variation of p over the eross
section of the beam can be neglected. p is then understood
to be the grid reflectivity for a plane wave at the angle
of incidence () of the beam axis.

The variation of p with frequency depends on the type
of grid considered. For a mesh, the power reflectivity of
the grid decreases as the frequency is increased. This has
the effect of making the cavity finesse smaller and smaller
at successive resonances with [ = 1,2,--- in (1). For
an array of conducting squares, on the other hand, the
cavity finesse increases with frequency, as long as losses
can be neglected. Grids may incorporate both capacitive
and inductive elements and have resonance properties of
their own. It should be noted that if the grating condition
given above is to be approached, the equivalent circuit
must be modified. For a capacitive grid, a small inductance
must be added in series with the capacitance and, for a
mesh, a small capacitance must be added in parallel with
the inductance [8].

The incident beam is assumed to have a spherical wave-
front and a Gaussian irradiance pattern of the form
exp (—r2/£), where r denotes the distance from the axis
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Fig. 1. (a) FP diplexer for beam guiding systems. Measurement
system is shown. (b) FP diplexer is incorporated in a waveguide
system.

and ¢ the beam radius. £ has a minimum value £ along
the axis, called the beam waist radius.

IIT. GENERAL RESULTS

The results given in this section are applicable to any
type of beam (i.e., not necessarily Gaussian) and any
lossless optical cavity incorporating two mirrors with
uniform reflectivity. Let a wave function ¢ be defined by
the condition that yy* represents the beam irradiance.
Because only relative powers are of interest here, ¢ can
be taken as equal to the electric field, assumed linearly
polarized. A more general definit®n of the wave function
is given in [97]. Let ¢y denote the incident wave function
at some reference plane [plane z in Fig. 1(a)] in the
absence of the filter. ¥y is normalized to unity in the sense
that

oo
[/ Yoo doy da: = 1 (3)

If the collecting antenna radiates a wave function ¥o* at
plane 2 when used in transmission, the totality of the power
is collected in the absence of the filter. We assume that this
is the case.

Let now ¢, denote the wave function of the beam at
plane z after s round trips in the resonator, the effect
of the grids on the amplitude and phase of the field being
omitted. The total field ig

=23 M, (4)

=0

where t denotes the field transmittivity of the grids, as-
sumed identical, and p their field reflectivity. The j;'ans-
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mitted power, collected by the receiving antenna, is

+eo
2
Pto—_—l//lpo*l[/dxldibz Z—IZIZ (5)
where vertical bars denote modulus. We have defined
Z=TCyp* (6)
s=0

where T = tt* and C, is the coupling factor between the

incident beam and the beam that has circulated s times -

in the resonator:

+oo

¢. = [[ Wy, do da. ()

—

Note that, from (3), C, = 1. Explicit expressions for C;
are given in Section IV for the case where ¥, represents a
Gaussian beam.

It should be noted that the wave pattern transmitted

through the filter usually differs significantly from yo as a -

result of the walk-off effects. Part of the power is therefore
rejected by the collecting antenna. This mismatch loss
can be avoided, at least at one frequency in the band, by
reshaping the radiation pattern of the collecting antenna.
The total transmitted power is

+a0

P, = / Y day dzs. (8)

—0

¥ being given by an infinite sum (4), the total transmitted
power P, can be expressed as a double sum. Because of the
invariance properties of the coupling factor, this double
sum can be reduced to a single sum and the formula for
the total transmitted power reduces to [6]:

P.,=(2ReZ—-14+R)/(1+R) )

where Z is given in (6), and R is the power reflectivity of
the grids. To obtain this result we first note that, from
(8) and (4),

P,= (1 — R X p*6"Cl,

(10)
§=0 r==0
where we have defined
“+o0
Csr = // \ps*ll/r dx1 dr: = Crs*- (11)

It can be shown that in a lossless medium the invariance
condition

Co = Co r>s (12)

r—s = Cr—s 3
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holds. We have, quite generally,

s—r=0 r=0

Thus (10) can be written

Pi= (1= RPLE p™eC* X (")

s—r=0 =0

e = 3 (0] (14)

where c.c. stands for complex eonjugate. Introducing Z
from its definition (6), the result (9) follows. More
generally, if the transformation of the field for a round
trip is denoted by ¢’ = dKy, where d is a number and K
a unitary operator, it can be shown that the power flowing
in the resonator can be expressed as a single sum.

The reflected field at some reference plane [plane z’
in Fig. 1(a)] is given by

Vo= ol + 83 e

s=1

(15)

where, as before, p and t are the field reflectivity and trans-
mittivity of each grid, ¢’ is the wave function in the
plane 2’ when the first grid is replaced by a perfect mirror,
and ¢./ is the wave function at z’ after s round trips.
Assuming that the collecting antenna would radiate a
wave function ¥o'* at the plane z’, the reflected power,
collected by this antenna, is

+oo
2

—|1—Z]YR. (16)

Py = ‘[ Yo' day day’

In deriving (16), use was made of the assumption that
each grid is lossless, i.e., | p |2 + | £|* = 1, and symmetric,
i.e., the phase angles of p and ¢ differ by »/2 [10]. The
total reflected power P, is of course just equal to 1 — P,
where P, is given in (9), since dissipation losses are ne-
glected.

In many important cases, the parameter Z, defined by
(6), is real at resonance. In that case, and for high cavity
finesses (T =1 — R < 1), the loss given by (5) is just
twice as large, in decibels, as the loss given in (9). For
example, if a 1-dB walk-off loss is suffered in total trans-
mitted power, a 2-dB loss is suffered if the collecting
antenna is optimized in the absence of the filter.

It is interesting that the system response is invariant
under a translation of the filter. This is a consequence of
the observation made before that the beam transformation
after s round trips is a translation 2sd directed along the
normal to the filter plane. This result, in fact, holds true
even if the dependence of the grid reflectivity on the in-
cidence angle is taken into account, as one can show on
the basis of the plane wave expansion method [11].
This means that it makes no difference whether an FP
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filter is located at the waist of the incident beam or far
from the waist (as long as it is wider than the beam).
Calculations can be simplified if we make use of this
observation because we can always assume, without loss
of generality, that the filter is located at the beam waist.
A similar result holds for wedged filters. In that case, the
response is invariant under a rotation of the filter about
the wedge axis.

IV. GAUSSIAN BEAM EXCITATION

For the case where ¥y represents a Gaussian beam, the
most convenient way of evaluating the coupling factor C,
introduced in Section IIT is to represent the incident
Gaussian beam by a complex ray. The coupling between
two Gaussian beams is then obtained by analogy with the
coupling between ray pencils [6].

Let the incident beam axis coincide with the z axis.
Upon inspection of Fig. 1(a) and assuming that n = 1,
we see that after s round trips the beam axis is offset later-
ally by a length

gs = 2sd sin 0. - (17)

The beam axis remains parallel to the z axis because the
two grid planes are parallel to one another. As indicated
before, we can assume, without loss of generality, that the
incident beam waist is located at the (z) plane.. The in-
cident Gaussian beam is represented at that plane by a
complex ray with position ¢ and slope go:

(18a)
(18b)

go = %o
QO = ’L/ kgo

where & denotes the beam waist radius. After s round
trips, the complex ray position and slopes are, from the
laws of paraxial ray optics,

(19a)
" (19b)

Qs = qo + 2sd cos 0,
gs = go-
The general procedure for obtaining g., ¢, from ¢, and g, is
to apply the confluent form of Sylvester’s theorem to the
5 X 5 round-trip ray matrix that characterizes the reso-
nator. In the present case, the result (19) is straight-
forward.

Because the beam axis remains parallel to its original
direction after a round trip, the expression [6, eq. (16)]
for the coupling factor C, simplifies, with the notations
of this paper, to

C. = exp (2iskd cos 8) (qo*;q.) "
X exp [3(7 — 5;00%) (90%;¢:) (@ — @s30:) 1 (20)

where we have introduced the complex Lagrange ray
invariant
(q1;92) = (k/2) (ugz — Gage) . (21)

This result (20) can also be obtained by direct integration
of the product of the fields of the two Gaussian beams
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(the incident beam and the beam after s passes in the
resonator).

Introducing expressions (17) and (19) into (20), we
obtain the coupling factor C,. Substituting in (6), we get

Z = T3 p*exp (is¢p) (1 + LisTD)!

=0

X exp [—3?T?G?(1 + %4sTD)—'] (22)

where
¢ = 2kd cos 0 (23)
and where we have defined
D = 2d cos §/kt?T (24)
G = 2d sin 6/&T. (25)

The plane wave expansion method, on the other hand,
leads to the following expression for Z:

Z = T/1r/_w du/_:dvexp[——(u2+vz)]

X [1 — ¢ exp (i) exp { —iTTu@ +(u2 + #)D/2JT
(26)

To obtain this expression we first expand the incident
field at plane z in a spectrum of plane waves. These waves
have an amplitude exp [ —~31(w? + #2) ], where u = k,.%
and v = k.., where k.,,, are the components of the wave
vector on plane z. The response of an FP to incident plane
wave is, as is well known, £2[[1 — p? exp (2ikd cos 8") T,
where 6’ denotes the incidence angle of the plane wave. We
have

cos @' = cos 6(k./k) — sin 6(k,,/k)
where
kZ/k ~1— %[(kxl/k)2 + (kxz/k)z:l

because the angular spread of the beam is small. This
response term corresponds to the term in brackets in
(26), as one easily verifies. The equivalence of (22) and
(26) can be established by applying the binomial ex-
pansion to the square bracket expression in (26) and
integrating each term.

The transmitted and reflected powers are obtained by
summing C,p* from 0 to «, according to (6), and sub-
stituting in (5), (9), or (16). These powers depend in
general, at some given frequency, on the three parameters
D, G, and R. For high cavity finesses, however, that is,
when 1 — R = T < 1, only the parameters D and G are
significant. When both D and G are small compared with
unity, a simple approximate expression for the total trans-
mitted power at resonance is

P,~1— 3(G*+ DY), D, GK1. 27

The physical meaning of the above relations is more
easily understood if we assume that either @ = Qor D = 0.
These approximations are made in Sections V and VI.
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V. DIFFRACTION WALK-OFF UNDER
NORMAL INCIDENCE

Under normal incidence ¢ = 0, we have G = 0. When
¢ + 2a = 0, mod 27, where ¢ is given in (23) and « is
the phase angle of p, the total transmitted power is,
from (22), (6), and (9),

PAD,R) = T(1 + R)S[2 X R(1 + 32T — 1],

(28)

This sum can be transformed to an integral:

P(DR) = [ e~[1+ 4RT-sint (3TDw) T du.  (20)
0

This second expression (29) can be obtained directly
by integrating the transmitted power over the filter area.
The variation of P, with D for various values of 7' given
in (28) or (29) is shown by dashed lines in Fig. 2. Because
of the beam divergence, the resonance frequency is slightly
higher than the one corresponding to ¢ + 2a = 0, mod 2.
The actual loss at resonance, obtained from (22), is shown
by plain lines in Fig. 2. ’ '

Fo;; high finesses, P, is a function of D only. This is
easily seen from (29). For high finesses, the sine function
in (29) can be replaced by its argument and the 7" factors
then cancel out in the integrand. Also, R can be replaced
by unity. We obtain
P.(D) ~ D'[ci (D) sin (D) — si (D’) cos (D) ],

1-R=T<«1 (30)

where si (x) and ci (z) denote the sine and cosine integrals

m
-
r4
=3
(2]
@
=
7]
4
=9
o
=
&
S
o
2
1)
2
PP ST T I Y W Y S S |
(o] | 2 3 4 5
D =2d/kEZT

Fig. 2. Diffraction walk-off loss (in decibels) as a function of dif-
fraction parameter D for various grid transmittances (plain
lines). £, denotes the beam waist radius, defined as the 1/e point
of the irradiance. Dashed lines give the loss at the plane wave
resonance frequency (¢ + 2a = 0, mod 2x).
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and D’ = 2/D. If we define the quality factor Q of the
resonator as the ratio of the center frequency to the 3-dB
bandwidth (@ = kd/T) we note from Fig. 2 (plain lines)
that no more than 1-dB diffraction walk-off loss is suffered
when

B/ > 0.2Q12 Q> 1. (31)

If, for example, a 1-percent bandwidth is desired, the beam
waist radius & should exceed three wavelengths. This is
clearly not a very stringent requirement.

VI. GEOMETRICAL WALK-OFF

Let us now assume that the filter is tilted at some angle
6, but neglect the diffraction walk-off discussed in Section
V. Setting now D = 0 in (22), we -obtain for the filter
transmission at resonance (¢ -+ 2a = 0, mod 2x) the
expression

P, (GR) = T(1 4+ R)™'[1 + 23 Reexp (—1s2T2G2)]).

(32)

Because diffraction is neglected, this result coincides with a
result given in [6, eq. (28)] for misaligned degenerate
cavities. The variation of P, with ¢ is shown in Fig. (3),
with 7 as a parameter. In the limit of high finesses (T < 1),
P, depends only on the parameter G and is given by

P(G) = r2Gexp (G2 erfe (1), 1-R=T«1
(33)

where erfc (2) denotes the complementary error function.
We note from Fig. (3) that a 1-dB loss is suffered, as a
result of the geometrical walk-off, when

& = 0.7dF sin 6 (34)

where F = #RY72T-! denotes the cavity finesse. In order
that the reflected beam be resolved from the incident
beam, the incidence angle # must be such that

sin 6 >> 1/k,. (35)

The diplexing operation that we consider is therefore
possible only if

£/N > 0.2Q2

where ) denotes, as before, the quality factor of the reso-
nator. This condition is similar to condition (31), which
was obtained from different considerations. In most
practical cases the incidence angle 8 is chosen on the basis
of dimensional requirements and is much larger than
(k&)

For the case where the collecting antenna is matched
to the incident beam in the absence of the filter, we have
at resonance, from (22), with D = 0, and (5) and (6),

(36)

Pu = T[Y R exp (—32T7G2) .

=0

(37)
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Fig. 3. Geometrical walk-off loss (in decibels) as a function of
walk-off parameter G for various grid transmittances. 6 denotes
the incidence angle.

For small misalignments (G < 1), (37) is approximately
Py=~217R(1 + R)G?, dB. (38)

VII. EXPERIMENTAL RESULTS

The predictions for the geometrical walk-off loss made
in Section VI have been compared to experimental results
obtained in the 70-80-GHz band with an FP filter, 300 mm
in diameter, incorporating two planar meshes spaced 8 mm
apart. The meshes’ dimensions and reflectivities are shown
in Fig. 4. The experimental setup is shown in Tig. 1(a),
with the electric field perpendicular to the plane of in-
cidence and parallel to one set of mesh wires (TE waves).
The beam pattern at the filter location was measured with
a scanning device, and a Gaussian beam fitted to the
—6-dB points. In all cases, the filter was located at the
beam waist. Fig. 5 shows the theoretical response for
incidence angles § = 0, 5, 10, 15, and 20°. The upper
curves correspond to the total transmitted power obtained
from (32), while the lower curves correspond to the power
collected when the antenna is optimized in the absence of
the filter [see (37)7]. These curves were obtained using
(22) with D = 0, (6) and (9) for the upper curve, and (5)
for the lower curve. Because the diffraction grating effects
are negligible, the mesh is represented by a pure inductance
L. For the polarization and grid orientation presently
considered we have

= —(1 — 32wL cos )L (39)

The values for L and d were obtained by best fitting the
theoretical transmission curve to the transmission curve
measured under normal incidence (§ = 0). We obtained
wL = 0.218 at resonance (71 GHz), in close agreement
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Fig. 4. Curve gives power reflectivity B = 1 — T of mesh used
in the experiments as a function of frequency, under normal
incidence and under an incidence angle of 20° (TE and TM
polarizations). Grid dimensions are also shown.
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Fig. 5. Plain curves show theoretical response of FP resonator as
a funection of frequency for various incidence angles. Upper curve
gives total transmitted power and lower curve gives power col-
lected when the antenna is optimized in the absence of the filter.
Beam waist radius (best fitted to the measured beam) is &, = 44
mm. Filter dimensions are given in text.

with the result given in Fig. 4, and d = 8.18 mm. Note
that the effective grid spacing d slightly exceeds the
mechanical spacing (8 mm). The loss measured with the
collecting antenna optimized in the absence of the filter
is in excellent agreement with the predicted value, though
slightly smaller. This set of measurements was made for
a beam waist radius & = 44 mm (Fig. 5) and &% = 24 mm
(Fig. 6). In the latter case the beam was focused to a small
spot size by moving the transmitting feed away from the
lens. Fig. 5 shows that a 1-GHz 3-dB bandwidth is
obtained at A = 4 mm. For an incidence angle of 15°
(that is, 30° between incident and reflected beams), the
walk-off loss does not exceed 1 dB.

The experimental transmitted and reflected powerg are
shown in Fig. 7 for an incidence angle of 15°, This curve
shows that the reflection loss off-resonance is of the order
of 0.1 dB. The responses are different for TE and TM



492
FREQUENCY (GHz)
68 69 70 74 T2 73 T4 T5 76 71T 718
0 T | T T 1 T I 1
20°
COLLECTED
POWER
@
= 5p
Z
Q
1724
@
=
(%24
3 -0
14
'—
-15

Fig. 6. Continuation of Fig. 5 for a smaller beam waist radius.
£ = 24 mm.
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Fig. 7. Measured reflected and transmitted power loss as a function
of frequency for an incidence angle of 15° for two polarizations,
TE and TM.

polarizations. Therefore incident fields at arbitrary polari-
zations would be depolarized. We have observed ex-
perimentally, however, that if the filter is rotated in its
own plane by 45° the filter response is almost the same
for all polarizations.

VIII. FURTHER CONSIDERATIONS

The purpose of this paper was to derive simple formulag
for the response of two-grid FP diplexers and verify
their validity on typical cases. In order to get a better
understanding of the possibilities of quasioptical diplexers,
the following qualitative considerations may be useful.

A. Dissipation Losses

The dissipation losses are mainly due to the finite
conductivity of the meshes. They have been neglected in
this analysis. It should be noted that, for a given band-
width, the dissipation losses become smaller and smaller
as the spacing between the grids is increased. As d is
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increased, the walk-off losses remain the same because
the grid reflectivity (and therefore the effective number
of bounces) is reduced. The free spectral range, however,
is reduced, and side-resonances appear that may cause
difficulties for some applications.

The above statement concerning the effect of the grid
spacing on the filter loss rests on the assumption that the
grid resistivities are unchanged. In fact, the resistivity of
a mesh tends to increase as the reflectivity is reduced
because the RF current must flow in conducting tapes of
reduced width. This increase in grid resistivity somewhat
offsets the benefit of having larger grid spacings. Because
capacitive grids do not have this problem, they are to be
preferred when the required grid reflectivity is low.
Capacitive grids need to be supported by plastic sheets.
These sheets, however, can be made thin enough, even for
large area filters, not to increase the loss significantly.

B. Wedged FP’s

Consider a Gaussian beam incident on a tilted FP
resonator far away from the beam waist. Because the
beam has a large cross-section area, it is legitimate to
evaluate the filter transmission by adding the transmissions
of elementary areas, each having a different resonance
frequency because of the varying incidence angle. The
transmission of the filter is obtained by integration,
with the appropriate weighting factor. This approach
shows clearly that a better transmission is obtained if the
local resonance frequency is made a constant by making

" the grid spacing nonuniform. Ideally, if one of the grids is

plane, the surface of the other grid should be an hyper-
boloid. If this proves impractical, some improvement can
nevertheless be obtained by simply wedging the resonator.
In a wedged filter the two grids remain plane, but their
planes are not parallel. The general formula given in [6]
18 applicable to wedged FP resonators. Further numerical
analysis will be required, however, in order to evaluate
accurately what benefit can be obtained by wedging FP
diplexers.

C. Use of Drelectrics in the Fillers

The use of high permittivity dielectrics, such as pure
alumina (e = 9.5, tan§ ~ 10~%), in the resonator [as
shown in Fig. 1(a)] reduces the walk-off losses for two
reasons. First, for a given optical thickness, the grid
spacing is reduced by a factor n = /2. Secondly, the angle
of incidence on the grids inside the filter is reduced because
of refraction, and the rate of expansion of the beam is
also reduced. The general expressions given previously
are easily generalized to the case where the resonator is
filled with a homogeneous medium with refractive index n.
It should be noted, however, that the grating effect be-
comes more severe. We must now have p < \/(n + sin 6),
instead of p < A/ (1 + sin 8). Furthermore, the fine struc-
ture of the field generated at one grid decays more slowly,
by a factor n, than in free space. The condition that the
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grids do not interact through evanescent fields may
therefore be difficult to satisfy.

It is possible to alleviate some of these difficulties, while
preserving the walk-off reduction, by filling the resonator
with uniaxial artificial dielectrics, the optical axis (z)
being perpendicular to the grids. If the axial (2/) com-
ponent of the dielectric tensor is large compared with the
transverse components, the surface of wave normal is
flattened in the 2’ direction compared with the isotropie
case and the group velocities make small angles with the
2’ axis. This is a favorable feature for reducing the beam
rate of expansion, as the theory of beam propagation in
anisotropic media shows [9].

D. Gaussian Apertures

For practical reasons, the filter diameter cannot always
be made much larger than the incident beam diameter.
It is then useful, in order to preserve the beam pattern
as much as possible, to introduce Gaussian apertures in
the filter. A Gaussian aperture is an absorbing sheet with
power transmissivity exp [— (r/a)%], where a denotes
some effective aperture radius. Vakhimov [127] has shown
that mirrors with Gaussian reflectivity are formally
equivalent to mirrors with complex curvatures. More
generally, a resonator incorporating Gaussian apertures
can be described by complex ray matrices. It is therefore
not difficult to obtain the response of such filters. The same
method is applicable to nonuniform grids provided that
the spatial variation of the grid reflectivity be at most
quadratic (in decibels) in the 21, x» coordinates.

The above discussion is only suggestive of the arrange-
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ments that need be investigated in order to optimize the
operation of quasioptical diplexers of the type considered.
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