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Walk-Off Effects in FabrY–Perot Diplexers

JACQUES A. ARNAUD, SENIOR MEMBER, IEEE, ADEL A. M. SALEH, MEMBER, IEEE, AND JOSEPH T. RUSGIO

Absfracf—Fabry-Perot (FP) resonators working under oblique

incidence can be used in the millimeter and far infrared bands as

diplexers or channel dropping filters. The response of two-grid

Fabry-Perot resonators under Gaussian beam excitation is evafuated

by adding the fields of the successive passes of the beam. The results

coincide with those obtained from a plane wave expansion of the

incident field. Closed form expressions are obtained for the losses

due to diffraction walk-off, geometrical walk-off, and mismatch.

Excellent agreement is obtained with experiments in the 70-80-GHz

band. For a l-GHz-bandwidth filter, working at an incidence angle

of 15”, and an incident beam waist radius of 40 mm, the transmission

loss at resonance does not exceed 1 dB. The reflection loss off-

resonsnce is about 0.1 dB. This type of diplexer is particularly useful

when used in conjunction with quasioptical guiding systems.

I. INTRODUCTION

THE OPERATION of conventional diplexers or channel

dropping filters is based on the resonance properties of

cylindrical or ring-type resonators coupled to waveguides

(for a review, see [1]). Because these devices are Iossy

and difficult to construct in the millimeter-wave range,

it is of interest to investigate quasioptical systems that can

perform similar operations. Quasioptical filters are in-

expensive and have low losses. A further advantage is that,

because of their large areas, they can handle large powers.

Quasioptical diplexers are particularly suitable for use with

quasioptical guiding systems such as those used for feeding

millimeter-wave antennas or for transmitting information

in cities [2].

The simplest type of quasioptical dlplexer is a

plane-parallel Fabry–Perot (FP) resonator working under

oblique incidence. A band of frequency is transmitted

through the filter, the rest of the beam being reflected and

collected. It is in principle possible to fabricate quasi-

optical diplexers with two FP resonators operating under

normal incidence and 3-dB couplers. This arrangement,

which requires tight tolerances, is not discussed here.

An FP resonator incorporating two grids behaves essen-

tially as a single pole resonator. If three or more grids

are used, the band edges can be made steeper and the

in-band ripples arbitrarily y small. We limit ourselves in

this paper to two-grid resonators.

The main dMicult y experienced with the type of diplexer

just described results from the walk-off losses, which

originate from the incident beam being finite in size.

Indeed, only infinite plane waves are “matched” to plane-

parallel resonators and fully transmitted at the resonance

frequency. For clarity, two kinds of walk-off losses are

Manuscript received July 5, 1973; revised September 24, 1973.
The authors are with Bell Laboratories, Crawford Hill Laboratory,

Holmdel, N. J. 07733.

distinguished: the diffraction walk-off loss and the geo-

metrical walk-off loss. The first kind is due to the expan-

sion of the beam by diffraction as it bounces back and

forth between the two grids. This effect is observed even

under normal incidence. A related effect is observed with

focused ray pencils [3]. It is to be distinguished from the

diffraction loss that originates from the introduction of

apertures in the resonator [4]. The resonator is here

assumed to be much larger in diameter than the incident

beam. The second kind of loss is experienced when the

beam is incident on the resonator at some angle 0 different

from zero. This loss is a consequence of the lateral dis-

placement of the beam bouncing back and forth between

the grids. The successive passes of the beam do not

coincide spatially. This effect is called “geometrical”

because it can be understood, in first approximation, on

the basis of simple geometrical optics considerations.

These two walk-off losses have been observed at optical

wavelengths [.5].

A general expression for the transmission of mode-

degenerate optical resonators (such as the FP) under

Gaussian beam excitation has been obtained by one of

the present authors [6]. This expression is used in the

present work. It is easy to see that, quite generally,

reflection on the two grids of the FP resonator in succession

amounts to a translation of the beam by a length 2d
(where d denotes the mirror spacing) directed along the

normal to the grid plane. An incident beam is therefore

translated, after a round trip in the resonator, by a length

2d cos 0 along its own axis, and by a length 2d sin 0 lateral-

ly. The condition that the round-trip phase shift be a

multiple of 27r reduces for narrow-band filters to the well-

known resonance condition

2d COS e = 1A (1)

where 1 denotes an integer. The resonance frequency

therefore increases with the incidence angle e. The geo-

metrical walk-off can be neglected if the lateral beam

displacement is much smaller than the beam radius ~0

after a number of round trips roughly equal to the cavity
finesse F (F is defined as the ratio of the free spectral

range c/2d cos O divided by the 3-dB bandwidth of the

resonance). The geometrical walk-off is negligible if

2d sin OF << & (2)

The purpose of this paper is to give accurate expressions

of the loss suff ered when this condition, (2), is not satisfied,

and compare these theoretical results with experiments.

We evaluate the transmission properties of plane-

parallel FP resonators under oblique incidence for Gaussian
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beam excitation by adding the fields of the successive

passes of the incident beam. This method is formally

equivalent to the modal approach, which, for the case of

plane-parallel resonators, amounts to performing plane

wave expansions of the incident beam. The form of the

result and the range of application, however, are cliff erent.

The multipass method gives the response in the form of

an kfinite sum. This sum is, in general, more convenient

to evaluate than the integral obtained from the plane

wave expansion method. Furthermore, the multipass

method is applicable in principle to wedged FP resonators

[6].

II. APPROXINIATIONS

Two FP diplexers are shown in Fig. 1 (a) and (b).

Fig. 1 (a) shows the measuring setup for a diplexer used

in lbeam guiding systems. Dual-mode or hybrid-mode

feeds radiate beams that are collimated by lenses corrected

for spherical aberration [7]. Similar systems are used for

collecting the transmitted and reflected beams. Fig. 1 (b)

shows the filter incorporated in a waveguide system.

In order to avoid the grating-like effects that degrade

the filter response, the grid periods should always be less”

than k/(1 + sin 19). This is assumed to be the case. It is

further assumed that the grid period is small enough,

compared to the grid spacing, that the fine structure of

the field generated at one grid may be negligible at the

other grid. Under such circumstances, each grid behaves

as an impedance across a transmission line representing

free space. We further assume that the ohmic losses are

neg”hgible. The grid is then fully characterized by its

fielcl reflection coefficient for plane waves: p = R112eia.
R k the power reflectivity and CYthe phase angle. Note

that p is usually a function of the incidence angle 6.

Because the angular divergences of the beams that we

are considering are small, the variation of p over the cross

section of the beam can be neglected. p is then understood

to be the grid reflectivity for a plane wave at the angle

of incidence (0) of the beam axis.

The variation of p with frequency depends on the type

of grid considered. For a mesh, the power reflectivity y of

the grid decreases as the frequency is increased. This has

the effect of making the cavity finesse smaller and smaller

at ;successive resonances with 1 = 1,2,. . . in (1). For

an array of conducting squares, on the other hand, the

cavity finesse increases with frequency, as long as losses

can be neglected. Grids may incorporate both capacitive

and inductive elements and have resonance properties of

their own. It should be noted that if the grating condition

given above is to be approached, the equivalent circuit

must be modified. For a capacitive grid, a small inductance

mud be added in series with the capacitance and, for a

meeh, a small capacitance must be added in parallel with

the inductance [8].

‘I’he incident beam is assumed to have a spherical wave-

front and a Gaussian irradiance pattern of the form

exp ( —r2/&2), where r denotes the distance from the axis
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Fig. 1. (a) FP diplexer for beam guiding systems. Measurement
system is shown. (b) FP diplexer is incorporated in a waveguide
system.

and f the beam radius. ~ has a minimum value .$0along

the axis, called the beam waist radius.

111. GENERAL RESULTS

The results given in this section are applicable to any

type of beam (i.e., not necessarily Gaussian) and any

lossless optical cavity incorporating two mirrors with

uniform reflectivity y. Let a wave function $ be defined by

the condition that 4#* represents the beam irradiance.

Because only relative powers are of interest here, # can

be taken as equal to the electric field, assumed linearly

polarized. A more general definidn of the wave function

is given in [9]. Let #0 denote the incident wave function

at some reference plane [plane x in Fig. 1(a)] in the

absence of the filter. #0 is normalized to unity in the sense

that

If the collecting antenna radiates a wave function tJJo* at

plane x when used in transmission, the totality of the power

is collected in the absence of the filter. We assume that this

is the case.

Let now $. denote the wave function of the beam at

plane x after s round trips in the resonator, the effect

of the grids on the amplitude and phase of the field being

omitted. The total field is

where t denotes the field transmittivit y of the grids, as-

sumed identical, and p their field reflectivity y. The trans-
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mitted power, collectedly the receiving antenna, is

.tCa

1/.!

2

P,o = *o*#dzldz2 =1212 (5)

—cc

where vertical bars denote modulus. We have defined

Z = T~C,p2’ (6)
S=o

where T = tt* and C. is the coupling factor between the

incident beam and the beam that has circulated s times

in the resonator:

+Oa

c, =
/.

~,*~. dx, dx,. (7)

—w

Note that, from (3), CO = 1. Explicit expressions for C.

are given in Section IV for the case where $0 represents a

Gaussian beam.

It should be noted that the wave pattern transmitted

through the filter usually cliff ers significantly from #0 as a

result of the walk-off effects. Part of the power is therefore

rejected by the collecting antenna. This mismatch loss

can be avoided, at least at one frequency in the band, by

reshaping the radiation pattern of the collecting antenna.

The total transmitted power is

+m

P, =
//

+“$ dx, dm (8)

—w

1#being given by an infinite sum (4), the total transmitted

power P, can be expressed as a double sum. Because of the

invariance properties of the coupling factor, this double

sum can be reduced to a single sum and the formula for

the total transmitted power reduces to [6]:

,, P,=(2Re Z–l+R)/(l+R) (9)

where Z is given in (6), and R is the power reflectivity y of

the grids. To obtain this result we first note that, from

(8) and (4),

P, = (1 – R)z ~ ~ P*2’P2’CW (lo)
S=oT=(l

where we have defined

+.

c,. =
//

+.*+, dx%dxt = Cm”. (11)

—m

It can be shown that in a Iossless medium the invariance

condition

c., = co ,–, = c,–., r>s (12)

holds. We have, quite generally,

?5=;5+i5”5. (13)
S=O?=0 S—r=o5-=0 7—8=0S=o S=,+

Thus (10) can be written

P, = (1 – R)z[ ~ ,o*2(s-r)Cs-r* i (PP*)”

s—r=o r+

+ Cc. – i (PP*)2’] (14)
t=o

where C.C. stands for complex conjugate. Introducing Z

from its definition (6), the result (9) follows. More

generally, if the transformation of the field for a round

trip is denoted by # = dKtJ, where d is a number and K
a unitary operator, it can be shown that the power flowing

in the resonator can be expressed as a single sum.

The reflected field at some reference plane [plane z’

in Fig. 1(a)] is given by

# = p+{ + i? ~ pz-’+,’ (15)
S=l

where, as before, p and tare the field reflectivity y and trans-

mittivity of each grid, *O’ is the wave function in the

plane x’ when the first grid is replaced by a perfect mirror,

and +.l is the wave function at X1 after s round trips.

Assuming that the collecting antenna would radiate a

wave function 40’* at the plane x’, the reflected power,

collected by this antenna, is

+.

Pro =
If/

IJO’**’ dx,’ dx,’ 2=11 –Z]2/R. (16)

—.

In deriving (16), use was made of the assumption that

each grid is lossless, i.e., ] P 12 + [ t \ 2 = 1, and wmmetri,c~

i.e., the phase angles of p and t differ by 7r/2 [10]. The

total reflected power P, is of course just equal to 1 – P,,
where P t is given in (9), since dissipation losses are ne-

glected.

In many important cases, the parameter Z, defined by

(6), is real at resonance. In that case, and for high cavity

finesses (T = 1 – R <<,1), the loss given by (5) is just

twice as large, in decibels, as the loss given in (9). For
example, if a l-dB walk-off loss is suffered in total trans-

mitted power, a 2-dB loss is suffered if the collecting

antenna is optimized in the absence of the falter.

It is interesting that the system response is invariant

under a translation of the filter. This is a consequence of

the observation made before that the beam transformation

after s round trips is a translation 2sd directed along the

normal to the filter plane. This result, in fact, holds true

even if the dependence of the grid reflectivity y on the in-

cidence angle is taken into account, as one can show on

the basis of the plane wave expansion method [11].

This means that it makes no difference whether an FP
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filter is located at the waist of the incident beam or far

from the waist (as long as it is wider than the beam).

Calculations can be simplified if we make use of this

observation because we can always assume, without loss

of generality, that the filter is located at the beam waist.

A similar result holds for wedged filters. In that case, the

respcmse is invariant under a rotation of the filter about

the wedge axis.

IV. GAUSSIAN BEAM EXCITATION

For the case where XOrepresents a Gaussian beam, the

most convenient way of evaluating the coupling factor C.

introduced in Section III is to represent the incident

Gaussian beam by a complex ray. The coupling between

two Gaussian beams is then obtained by analogy with the

couplling between ray pencils [6].

Let the incident beam axis coincide with the z axis.

Upon inspection of Fig. 1 (a) and assuming that n = 1,

we see that after .sround trips the beam axis is offset later-

ally by a length

~. = %d sin 0. (17)

The ~beam axis remains parallel to the z axis because the

two grid planes are parallel to one another. As indicated

before, we can assume, without loss of generality, that the

incident beam waist is located at the (x) plane., The in-

cident Gaussian beam is represented at that plane by a

complex ray with position q. and slope ~.:

qo = .$0 (18a)

q, = i/k&l (18b)

where to denotes the beam waist radius. After s round

trips, the complex ray position and slopes are, from the

laws of paraxial ray optics,

q. = qo + 2sd COS (kjl) (19a)

q. = ql). (19b)

The general procedure for obtaining q., q, from qo,and @Ois

to ap,ply the confluent form of Sylvester’s theorem to the

5 X 5 round-trip ray matrix that characterizes the reso-

nator. In the present case, the result (19) is straight-

forward.

Because the beam axis remains parallel to its original

direction after a round trip, the expression [6, eq. (16)]

for the coupling factor C. simplifies, with the notations

of this paper, to

C. = exp (2iskd cos 6) (qO*;q,)’1

x exp [+(Q – g.;qO*) (qO*;q,)-l(Q – g.;q.) 1 (20)

wherp we have introduced the complex Lagrange ray
invariant

(!71;!12) = (~~/a (qldz – Qlq2) . (21)

This result (20) can also be obtained by direct integration

of thle product of the fields of the two Gaussian beams
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(the incident beam and the beam after s passes in the

resonator).

Introducing expressions (17) and (19) into (20), we

obtain the coupling factor C,. Substituting in (6),. we get

Z = T ~ p28exp (is+) (1 + ~isf!’ll)-l
.5=0

X exp [–&2 T2G’(1 + &sTD)-’] (22)

where

@ = 2kd COS 8 (23)

and where we have defined

D = 2d cos 0/k&?T (24)

G = 2d sin 0/,$OT.

The plane wave expansion method, on

leads to the following expression for Z:

(25)

the other hand,

Z= T,r~:du~: dv exp [– (U2 + V2)]

X El – p2exp (i@) exp { – iT[uG +(u’ + @/!2~\~.

(26)

To obtain this expression we first expand the incident

field at plane x in a spectruxn of plane waves. These waves

have an amplitude exp [– ~ (U2 + V2) ], where u G lc.,fo

and v = I’czzfo,where k., ,Zare the components of the wave

vector on plane z. The response of an FP to incident plane

wave is, as is well known, t2[l — pz exp (2ikd cos 8’) ]–I,
where 0’ denotes the incidence angle of the plane wave. We

have

cos 0’ = cos O(k./k) – sin O(kZ1/k)

where

I%=/k m 1 – *[(kzl/k)’ + (k%,/k)’]

because the angular spread of the beam is small. This

response term corresponds to the term in brackets in

(26), as one easily verifies. The equivalence of (22) and

(26) can be established by applying the binomial ex-

pansion to the square bracket expression in (26) and

integrating each term.

The transmitted and reflected powers are obtained by

summing C.& from O to co, according to (6), and sub-

stituting in (5), (9), or (16). These powers depend in

general, at some given frequency, on the three parameters

D, G, and R. For high cavity finesses, however, that is,

when 1 — R = T <<1, only the parameters D and G are

significant. When both D and G are small compared with

unity, a simple approximate expression for the total trans-

mitted power at resonance is

P,=l – ~(G2+D2), D, G<< 1. (27)

The physical meaning of the above relations is more

easily understood if we assume that either G = O or D = 0.
These approximations are made in Sections V and VI.
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V. DIFFRACTION WALK-OFF UNDER

NORMAL INCIDENCE

Under normal incidence 0 = O, we have G = O. When

d + 2a = O, mod 2r, where 4 is given in (23) and a is

the phase angle of p, the total
from (22), (6), and (9),

m

P,(ll,R) = T(I + R)-’[2 ~%

~ransmitted “power is,

1 + $s?PD2)-1 – 1].
S=o

(28)

This sum can be transformed to an integral:

/

w
P,(D,R) = @–W[l+ 4RT-Z sirf’ ($TDw) ]–I dw. (29)

o

This second expression (29) can be obtained directly

by integrating the transmitted power over the filter area.

The variation of P, with “D for various values of T given

in (28) or (29) is shown by dashed lines in Fig. 2. Because

of the beam divergence, the resonance frequency is slightly

higher than the one corresponding to 4 + 2cr = 0, mod 27T.

The actual loss at resonance, obtained from (22), is shown

by plain lines in Fig. 2.
For high finesses, P, is a function of D only. This is

easily seen from (29). For high finesses, the sine function

in (29) can be replaced by its argument and the T factors

then cancel out in the integrand. Also, R can be replaced

by unity. We obtain

P,(D) = Df[ci (D’) sin (D’) – si (D’) cos (D’)],

1–R=T<<l (30)

where si (x) and ci (x) denote the sine and cosine integrals

.

d
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Fig. 2. Diffraction walk-off loss (in decibels) as a function of dif-
fraction parameter D for various grid transmittances (plain
lines). .$Odenotes the beam waist radius, defined as the I/e point
of the irradiance. Dashed lines give the loss at the plane wave
resonance-frequency (~ + 2a = O, mod 2ir).
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and D’ = 2/D. If we define the quality factor Q of the

resonator as the ratio of the center frequency to the 3-dB

bandwidth (Q = ?cd/T) we note from Fig. 2 (plain lines)

that no more than l-dB diffraction walk-off loss is suffered

when

[o/A > 0.2Q’12, Q>> 1. (31)

If, for example, a l-percent bandwidth is desired, the beam

waist radius .& should exceed three wavelengths. This is

clearly not a very stringent requirement.

VI. GEOMETRICAL WALK-OFF

Let us now assume that the filter is tilted at some angle

0, but neglect the diffraction walk-off discussed in Section

V. Setting now D = O in (22), we obtain for the filter

transmission at resonance (@ + 2a = O, mod 27r) the

expression

P,(G,R) = T(l + R)-’[l + 2 S liP exp (–~s27’2G2)].
*=1

(32)

Because diffraction is neglected, this result coincides with a

result given in [6, eq. (28)] for misaligned degenerate

cavities. The variation of P~ with G is shown in Fig. (3),

with T as a parameter. In the litit of high finesses (T<< 1 ),

P, depends only on the parameter G and is given by

P,(G) N mUZG-1exp (G–z) erfc (G–1) , 1 — R s l“ <<1

(33)

where erfc (x) denotes the complementary error function.

We note from Fig. (3) that a l-dB loss is suffered, as a

result of the geometrical walk-off, when

& = 0.7dF sin o (34)

where F = rR112T–l denotes the cavity finesse. In order

that the reflected beam be resolved from the incident

beam, the incidence angle 0 must be such that

sin 6>> l/k.go. (35)

The diplexing operation that we consider is therefore

possible only if

$0/~ >> 0.2Q1/’ (36)

where Q denotes, as before, the quality factor of the reso-

nator. This condition is similar to condition (31), which
was obtained from different considerations. In most

practical cases the incidence angle o is chosen on the basis

of dimensional requirements and is much larger than

(lcgo)-1.

For the case where the collecting antenna is matched

to the incident beam in the absence of the filter, we have

at resonance, from (22), with D = O, and (5) and (6),

P,o = T2[~ R“ exp ( – $S2T2G2)]2. (37)
.$=0
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t ‘Y</’

G=2d sin6/~oT

Fig. 3. Geometrical walk-off loss (in decibels) as a function of
walk-off parameter G for various grid transmittances. e denotes
tbe incidence angle.

For small misalignments (G<< 1), (37) is approximately

P,, N 2.17R(1 + R)GZ, dB. (38)

VII. EXPERIMENTAL RESULTS

The predictions for the geometrical walk-off lOSS made

in Section VI have been compared to experimental results

obtained in the 70–80-GHz band with an FP filter, 300 mm

in diameter, incorporating two planar meshes spaced 8 mm

apart. The meshes) dimensions and reflectitities are shown

in Fig. 4. The experimental setup is shown in Fig. 1 (a),

with the electric field perpendicular to the plane of in-

cidence and parallel to one set of mesh wires (TE waves).

The beam pattern at the filter location was measured with

a scanning device, and a Gaussian beam fitted to the

– 6-dB points. In all cases, the filter was located at the

beam waist. Fig. 5 shows the theoretical response for

incidence angles 0 = O, 5, 10, 15, and 20°. The upper

curves correspond to the total transmitted power obtained

from (32), while the lower curves correspond to the power

collected when the antenna is optimized in the absence of

the filter [see (37) ]. These curves were obtained using

(22) with D = O, (6) and (9) for the upper curve, and (5)
for the lower curve. Because the diffraction grating effects

are negligible, the mesh is represented b y a pure inductance

L. For the polarization and grid orientation presently

considered we have

p = – (1 — i20.)L COS O)–l. (39)

The value~ for L and d were obtained by best fitting the

theoretical transmission curve to the transmission curve

measured under normal incidence (o = O). We obtained

WL = 0.218 at resonance (71 GHz), in close agreement
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Fig. 4. Curve gives power reflectivity R = 1 – T of mesh used
in the experiments as a function of frequency, under normal
incidence and under an incidence angle of 20” (TE and TM
polarizations). Grid dimensions are also shown.
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u
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Fig. 5. Plain curves show theoretical response of FP resonator as
a function of frequency for various incidence angles. Upper curve
gives total transmitted power and lower curve gives power col-
lected when the antenna is optimized in the absence of the filter.
Beam waist radius (best fitted to the measured beam) k $0 = 44
mm. Filter dimensions are given in text.

with the result given in Fig. 4, and d = 8.18 mm. Note

that the effective grid spacing d slightly exceeds the

mechanical spacing (8 mm). The loss measured with the

collecting antenna optimized in the absence of the filter

is in excellent agreement with the predicted value, though

slightly smaller. This set of measurements was made for

a beam waist radius .$0= 44 mm (Fig. 5) and to = 24 mm
(Fig. 6). In the latter case the beam was focused to a small

spot size by moving the transmitting feed away from the

lens. Fig. 5 shows that a 1-GHz 3-dB bandwidth is

obtained at h = 4 mm. For an incidence angle of 15°

(that is, 30° between incident and reflected beams), the

walk-off loss does not exceed 1 dB.
The experimental tranmnitt.d and .efleeted power~ are

shown in Fig. 7 for an incidence angle of 15°. This curve

shows that the reflection loss off-resonance is of the order

of 0.1 dB. The responses are different for TE and TM
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Fig. 6. Continuation of Fig. 5 for a smaller beam waist radius.
gO = 24 mm.
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Fig.7. Measured reflected andtranstitted power lossas afunction
of frequency for an incidence angle of 15° for two polarizations,
TE and TM.

polarizations. Therefore incident fields atarbitrary polari-
zations would be depolarized. We have observed ex-

perimentally, however, that if the filter is rotated in its

own plane by 45°, the filter response is almost the same

for all polarizations.

VIII. FURTHER CONSIDERATIONS

The purpose of this paper was to derive simple formulas
for the response of two-grid FP diplexers and verify

their validity on typical cases. In order to get a better

understanding of the possibilities of quasioptical diplexers,

the following qualitative considerations may be useful.

A. Dissipation Lo.mes

The dissipation losses are mainly due to the finite

conductivity y of the meshes. They have been neglected in

this analysis. It should be noted that, for a given band-

width, the dissipation losses become smaller and smaller

as the spacing between the grids is increased. As d is

increased, ‘the walk-off losses remain the same because

the grid reflectivity y (and therefore the effective number

of bounces) is reduced. The free spectral range, however,

is reduced, and side-resonances appear that may cause

difficulties for some applications.

The above statement concerning the effect of the grid

spacing on the filter loss rests on the assumption that the

grid resistivities are unchanged. In fact, the resistivity of

a mesh tends to increase as the reflectivity is reduced

because the RF current must flow in conducting tapes of

reduced width. This increase in grid resistivit y somewhat

off sets the benefit of having larger grid spacings. Because

capacitive grids do not have this problem, they are to be

preferred when the required grid reflectivity is low.

Capacitive grids need to be supported by plastic sheets.

These sheets, however, can be made thin enough, even for

large area filters, not to increase the loss significantly.

B. Wedged FP’s

Consider a Gaussian beam incident on a tilted FP

resonator far away from the beam waist. Because the

beam has a large cross-section area, it is legitimate to

evaluate the filter transmission by adding the transmissions

of elementary areas, each having a different resonance

frequency because of the varying incidence angle. The

transmission of the filter is obtained by integration,

with the appropriate weighting factor. This approach

shows clearly that a better transmission is obtained if the

local resonance frequency is made a constant by making

the grid spacing nonuniform. Ideally, if one of the grids is

plane, the surface of the other grid should be an hyper-

boloid. If this proves impractical, some improvement can

nevertheless be obtained by simply wedging the resonator.

In a wedged filter the two grids remain plane, but their

planes are not parallel. The general formula given in [6]

is applicable to wedged FP resonators. Further numerical

analysis will be required, however, in order to evaluate

accurately what benefit can be obtained by wedging FP

diplexers.

C. Use oj Dielectrics in the Filters

The use of high permittivity dielectrics, such as pure

alumina (e = 9.5, tan 6 = 10–4), in the resonator [as

shown in Fig. 1 (a)] reduces the walk-off losses for two

reasons. First, for a given optical thickness, the grid

spacing is reduced by a factor n = dlz. Secondly, the angle

of incidence on the grids inside the filter is reduced because

of refraction, and the rate of expansion of the beam is

also reduced. The general expressions given previously

are easily generalized to the case where the resonator is
filled with a homogeneous medium with refractive index n.

It should be noted, however, that the grating effect be-

comes more severe. We must now have p < ~/(n + sin 0),

instead of p < k/(1 + sin t?). Furthermore, the fine struc-

ture of the field generated at one grid decays more slowly,

by a factor n, than in free space. The condition that the
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grids do not interact through evanescent fields may

therefore be difficult to satisfy.

It is possible to alleviate some of these difficulties, while

preserving the walk-off reduction, by filling the resonator

with uniaxial artificial dielectrics, the optical axis (z’)

being perpendicular to the grids. If the axial (z’) com-

ponent of the dielectric tensor is large compared with the

transverse components, the surface of wave normal is

flattened in the z’ direction compared with the isotropic

case and the group velocities make small angles with the

z’ axis. This is a favorable feature for reducing the beam

rate of expansion, as the theory of beam propagation in

anisotropic media shows [9].

D. Gaumkn Apertures

For practical reasons, the filter diameter cannot always

be lmade much larger than the incident beam diameter.

It is then useful, in order to preserve the beam pattern

as much as possible, to introduce Gaussian apertures in

the filter. A Gaussian aperture is an absorbing sheet with

power transmissivity exp [– (r/a) 2], where a denotes

some effective aperture radius. Vakhimov [12] has shown

that mirrors with Gaussian reflectivity are formally

equivalent to mirrors with complex curvatures. More

generally, a resonator incorporating Gaussian apertures

can be described by complex ray matrices. It is therefore

not difficult to obtain the response of such filters. The same

method is applicable to nonuniform grids provided that

the spatial variation of the grid reflectivity be at most

quadratic (in decibels) in the xl, X2 coordinates.

The above discussion is only suggestive of the arrange-
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ments that need be investigated in order to optimize the

operation of quasioptical diplexers of the type considered.
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